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Y r:_:iggn Novel, multifunctional and smart magnetic materials
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Heusler alloys

Multiferroics

Magnetic fluids and composites

Magnetic polymers

Metamaterials

Superconductive materials

Diluted magnetic semiconductors and oxides

-







Magnetism Department, Faculty of Physics, MSU

| i—:—ﬁl Introduction Cd,. Mn,Se, Hg_Mn, Te
- My, Low Temperature  angvi-mn | before1987
GaAs:Mn (Tc=173 K)

~

Fu.r'd'yna DMS

7 avadskii Room Temperature N
Nagaev Si:Mn (>400K) 2004
Ohno TiO, ;Co (600-800 K) 2001
Dietl DMO

ZnO:TM, SnQ:TM, CeO,; TM etc, TM=Mn, Co, Fe
Matsumoto
Coey _ | ~Si, HfQ, 2004
Dubr_oca_ do magnetlsm—quasﬁerromagnetlsnllioz’ Zno, IO,
Kaminski&
Sarma Nanoparticles CeO,, Al,O,, ZnO,

FM Iin nanostructures

In,O,, and K006.

There is an ongoing quest for ferromagnetic semiconductor&ith a Curie temperature we
above room temperature, which could be used for a second geration of spin electronig

as well as a search for transparent ferromagnets which candad an optoelectronic dimegsion.




Magnetism Department, Faculty of Physics, MSU

Eﬁﬂ =Intrinsic Ferromagnetism
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Questions:
1. Intrinsic or Extrinsic? (parasitic phases andderagnetic clusters)

2. Which ions bear magnetic moment?
3. Type of exchange? (carrier-mediated, superexeharercolation

etc)
4. Does a TM doping play key role?

Si:Mn and TiO,_4Co | D
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b 1 Dilute Magnetic Oxides TiQ),: Co

X

Tl100,C00;

Substrate SrTi(§100)

LaAlO3 (0 01)

X=0.1-8.0 % D= 0.2-0.6mm

M agn etron s p utterin g Tsubstrate=550

V= 0.05-0.09 nm/sec

XPS, XAS, XPS, SQUID, VSM, TKE, TEM, AFM

0, Ti+Co

o,

O,

O,

SITIO,(100)

Ar

2x106—2x104 Torr.

Rutile, anatase, TiO

Annealing,
Rapid Quenching

argon—-oxygen atmosphere at oxygen partial pressureo D
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Carrier-mediated FM (RKKY
type) +percolation
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FIG. 1: Schematic representation of magnetic percolation
in mxide based dilute magnetic semiconductors. The solid
squares represent the oxygen vacancies where an electron, rep-
resented by an arrow, is localized. The gray circles represent
the extension of the electron wave-function. Magnetic impu-
rity spins are represented by small arrows whose orientation is
established by antiferromagnetic exchange coupling with the
localized carrier.

Sarma&Calderon, 2006
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Ferromagnetism in Si. Prehistory

Si implanted by Ar and Ne — low temperature FM
(Khoklov&Pavlov 1976)

Si implanted with Si, Ar and irradiated by neutrons
(Dubroca et al 2006)

Si implanted by Xe and Kr (Adashkevich 2007)
Si-implanted by Mn (Bolduc 2005, Yoon 2006, MSU-(ilmeet-
2005-2006, Bandaru 2006. Khaibibulin 2007 )

Si-Mn (evaporation) Kim et al 2003 Tc=210 K

Si-Mn (crystalline) Zhang et al 2004 Tc=400 K

Si:Mn (sputtering) Demidov et al 2006 Tc>400 K

L
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b ey Above room temperature ferromagnetism in Si:Mn
N = P :

Si wafers n-type and p-type (D=0.044 cm)

9*10 14 _ 2*10 19 -3.

Mn*implantation 1.10® -5.10¢ -2 Extrion 1000
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h, mm h, nm

annealing at 850°# during 5 min

SIMS, SRP, TEM,
XRD, XAS, EXAFS,
VSM 300 K,
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Faraday Effect in Si:Mrg
4
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We are unable to explain some observed features™”
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Consumption related to temperature control alone (spaatniog

cooling, and refrigeration) accounts for 50% of the ggeronsumption
In homes (2005 data) and 57% in commercial buildings §af¥a).
Consequently, increasing the energy efficiency of refiagjon systems
would have a noticeable effect on energy hillagnetic refrigeration is a
good candidate for making this improvement, as it is moex@stically
efficient than the process based on the compression/expanisgases
(magnetic refrigerator prototypes can achieve 60% ofl i@arnot)
efficiency, whereas the best commercial conventionaigefator units
can reach only 40%Moreover, as no refrigerant gases are required for
magnetic refrigeration, there is no concern about ozopéeten or
greenhouse effect, which contributes further to its emmental



Magnetocaloric effect

15%






Saving 30% of energy
Ecologically-friendly
- Heatiradion Gd i1s the best material

- —~@l  We are working to find novel
materials
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Liu et al. Nature, june 2012



F. Heusler 1898

X,YZ- full-Heusler alloys CuMnSb 1903

XYZ - half-Heusler alloys

Quaternary
XYZ+M

Ni-Mn-In-Z

Groot et al (1983) half-metallicity in NIMnSb. GiaWmOKE - PdMnSb
Reis’s group and Miyazaki's group (2006).,8mSi

Martensitic transition  Magnetic Shape Memory (MSM) — NinGa (up to 9% ),
Direct and Inverse Magnetocaloric Effect, ExchanggesBMetamagnetism, Kinetic arrest et







Transition temperatures

Adolf Karl Gottfried Martens Sir William Chandler Roberts-Austen
(1850-1914) (1843-1902)

Courtesy of M.Acet



A scanning Hall probe imaging study of the eld irhal martensite—austenite phase transition
in Ni50Mn34In16 alloy/ V. K. Sharma, J. D. Moore, M. Chattopadhyay et al // J. Phys.:
Condens. Matter. 2010. V. 22. P. 016008-8
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Prior the measurements, the
samples were heated up to 400K.
The measurements have been
generally carried out during heating
after the samples were cooled from
400 K to the starting temperature at
zero magnetic field that
corresponds to the zero field cooled
(ZFC) measurements. Some of
magnetization data were collected
after samples being cooled in a
field (FC) and during field cooling

cycle (FCC).

T=5K, H=5T
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Direct measurements of the adiabatic
change of temperaturél ,, under an
applied magnetic field have been done
using adiabatic magnetocalorimeter
(MagEq MMS 801set up) in a
temperature range of 250-350 K, and
In magnetic fields up to 1.8 T. The
external magnetic fields have been
ramped at a rate of up to 2T/sec during
/T ,p measurements. The magnetic
entropy changes3,,) were estimated
from M(H,T) curves using a procedure
derived from the Maxwell relation
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